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1. Introduction

Young and Pollack (1977; also see Pollack and
Young, 1975) present the results of a major attempt
to simulate numerically the three-dimensional cir-
culation of the atmosphere of Venus. Their attempt
is the first that has had any success at reproducing
observed features of the upper atmosphere such as

.the 4-day circulation and the Y-pattern found in
ultraviolet photographs. Consequently, they con-
cluded that they had found ‘‘solutions to the govern-
ing equations of motion which are representative
of the dynamical regimes occurring in the Venus
atmosphere’ (p. 1348, Young and Pollack, 1977).
However, we believe that there are substantial
questions regarding the validity of their model and
the proper interpretation of their results which they
do not adequately discuss. These questions are so
substantial that we doubt, in fact, that they have
found valid solutions representative of the Venus
atmosphere. We will not consider here whether the
external forcing, boundary conditons and parameter
values assumed in Young and Pollack’s calculations
are representative of Venus’ atmosphere; rather we
will address only the question of whether the physics
which is responsible for their results has been formu-
lated correctly.

In Young and Pollack’s model, the global mean
temperature structure is specified and constant.
Thus, only the horizontal temperature structure at
each altitude can respond to the differential solar
heating and dynamics. In equilibrium a balance be-
tween the parameterized horizontal heat diffusion
and differential solar heating controls the mean
meridional temperature structure, so that the model
dynamics does not have much influence on the
equator-to-pole temperature gradient (p. 1342). Con-
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-sequently, a major part of the interaction between

the dynamics and the temperature structure is miss-
ing from this model; therefore, the momentum
balance in the model results is of greater interest.

In Young and Pollack’s equilibrium solutions,
the balancing terms in the momentum conservation
equations, which determine the equilibrium mean
zonal wind, are the parameterized vertical momen-
tum diffusion, the mean meridional advection and
horizontal eddy transport terms (p. 1335). Con-
sequently, the formulation of these three terms must
be physically realistic if their results are to be mean-
ingful. In the following two sections, we consider
the formulation of the vertical momentum diffusion
and large-scale dynamics, respectively.

2. Formulation of vertiéal momentum diffusion

Young and Pollack’s formulation of the vertical
momentum diffusion introduces two spurious forces.
Consider the vertically integrated time rate of change
of their zonal momentum equation, obtained by
muitiplying the u, component of the equation of
motion by the density p and integrating by parts over
height z. If we ignore the horizontal diffusion, rota-
tion and pressure gradient terms for clarity, their
equation becomes
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where vy, is a constant. The first spurious force is a
stress at the top boundary caused by the fact that
the boundary termin (1) is not zero there. The proper
boundary condition at the top is that there should
be no stress there, i.c.,
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but the top boundary conditions used by Young and
Pollack [their egs. (19) and (21)} do not insure the
condition (2) as direct substitution demonstrates.
Although this spurious boundary force cannot, by
itself, produce mean zonal momentum because the
zonal average of (2) is zero, the spurious meridional
motions that arise must affect.the mean meridional
advection term, and, therefore, the equilibrium
momentum balance in their model.

The second spurious force is a body force pro-
duced by the last term in (1), which results solely
from the neglect of vertical density gradients in
Young and Pollack’s formulation of the vertical
momentum diffusion. That this formulation can
drastically affect the equilibrium zonal wind can be
illustrated by a simple example. Consider the hori-
zontal average of the zonal momentum equation
in flux form, viz.,
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where the overbar indicates the horizontal average.
The boundary conditions on the vertical velocity w
make the vertical integral of the first term on the
right equal to zero; i.e., the large-scale motions con-
serve momentum while diffusion does not, solely
because of the no-slip boundary condition at the
surface. As a convenient test case, we replace the
advection term by a simple delta-function forcing
near the top and bottom of an atmosphere of depth
D > H, the atmospheric scale height, i.e.,

5"’; (pwitg) = Fold(z — D*) — 8z — d*)], (&)

where D — D* < 1 and d* < 1. This forcing drives
oppositely directed winds near the top and bottom
of the model atmosphere and satisfies the conserva-
tion condition.

We can now solve (3) analytically for the equilib-
rium zonal velocity at the top of the atmosphere
by setting the left side to zero and substituting for
Fgair either the correct diffusion
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or the Young and Pollack form
d%u
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where the horizontal average is understood. We also
use p = py exp(—z/H) with constant H for con-
venience. With the boundary conditions u = 0 at
z =0 and 0u/dz = 8%/dz® = 0 at z = D and the
correct diffusion, we integrate (3) to get
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With Young and Pollack’s diffusion, we get
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Note that in the absence of any forcing, Fy, = 0, both
forms of diffusion give the correct answer that
u(D) = 0 in equilibrium, a result found by Young
and Pollack when they removed all of the nonlinear
terms from their momentum equations (p. 1337).
However, this calculation demonstrates the impor-
tant result that the interaction between the incor-
rect diffusion and the forcing terms can change the
equilibrium zonal wind by large factors. For exam-
ple, when D =~ 4H as is implied by Young and Pol-
lack’s Fig. 1, u,,(D) is more than five times larger
than the correct value, u.(D).
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3. Truncation effects

Truncation of a spectral model at small wave-
numbers produces many distortions of the simulated
dynamics, not all of which are confined to high wave-
numbers, even when the energy in these high wave-
numbers is very small (see, e.g., Puri and Bourke,
1974). The truncation at total wavenumber 4 used
by Young and Pollack limits to 24 the number of
spherical harmonic modes® retained .in their rep-
resentation of the prognostic variables, but they
assume that the flow is symmetric about the equator
which further restricts the number of harmonic
modes to only 10. (These modes include four wave
pairs, each pair composed of modes with identical
spatial structure but opposite phase speeds.) This
truncation is so severe that we cannot accept their
claim that this ‘‘resolution was adequate for resolv-
ing the essential dynamical processes’ (p. 1320).

! We are referring to the number of modes in a spherical
harmonic expansion of the vorticity equation (cf., Baines, 1976)
which is equivalent to Young and Pollack’s formulation.
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For example, one dynamical process which is not
properly simulated with this severe truncation is the
shear (or barotropic) instability of the only other
zonal flow mode besides solid rotation retained with
this truncation, the one with two nodes in the merid-
ional direction in each hemisphere. This mode is
clearly present in Young and Pollack’s solution I
(see their Fig. 2). Baines (1976) specifically shows
that this zonal flow mode is most unstable to a pair
of waves with zonal wavenumbers 2 and 4 which are
antisymmetric about the equator, waves which have
been excluded from Young and Pollack’s model. In
fact, we conclude from Baines’ results that Young
. and Pollack’s model retains too few modes to simu-
late properly the shear instability of any of the seven
potentially unstable modes that are retained in their
model; hence these modes are artificially stabilized.
Since Baines’ inviscid calculations retain only a few
modes to simplify the interactions, we must turn to
higher resolution calculations to examine the com-
plete evolution of shear unstable flows. Such calcu-
lations show that, in the absence of forcing, the
amplitude of shear unstable modes can be drastically
altered by the instability (Rossow and Williams,
1979). Whether or not shear instability plays an im-
portant role in Venus’ atmosphere, the fact that this
model cannot properly simulate this process makes
it difficult to accept the claim that this model cor-
rectly simulates any of the essential nonlinear inter-
actions, even for the resolved modes.

We also question the significance of finding a flow
dominated by solid rotation and an oscillating Y-like
pattern in their solution II. Since seven of the ten
retained modes have harmonic indices 3 and 4 for
which the diffusion times are less than 100 days,
only three modes in their model are not strongly
damped. These three modes must therefore contain
the largest fraction of the total kinetic energy in
the flow. These three modes are just solid body rota-
tion and the two zonal wavenumber 1 waves of op-

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 37

posite phase speed which dominate the Y-like
Sfeatures in Young and Pollack’s solution.

4. Summary

The validity of any conclusions, drawn from
Young and Pollack’s model results, regarding
mechanisms producing large zonal flows depends on
the fidelity of the model physics to the physics of
large-scale atmospheric motions. Except. for stresses
at the planetary surface, all model physics should
conserve angular momentum, but Young and Pol-
lack’s vertical momentum diffusion formulation
does not. Since vertical diffusion is fundamental to
the momentum balance in the model’s equilibrium
state (pp. 1335, 1337), the two spurious diffusive
forces may be important in determining the equilib-
rium zonal wind. Furthermore, the severe truncation
and assumed symmetry, which eliminate most of the
wave modes, and the strong damping of all but three
of the remaining modes may effectively inhibit the
nonlinear interactions of the resolved modes. We
believe that these problems with the dominant terms
in the momentum equations raise serious doubts
about the validity of Young and Pollack’s con-
clusions.
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